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1. INTRODUCTION 

Let {X,, n >, 1) be a sequence of independent random variables, defined 
on a probability space (52, d ,  P), such that EX,  = 0 and EX: = a: < coy n 3 1. 
Let us put So = 0,  B i  = 0,  S, = X I +  ... +X,,  B i  = a:+ ... +a; = ES:, 
n 2 1. Let (N , ,  n 2 1) be a sequence of positive integer-valued random varia- 
bles, defined on the same probability space (52,  d ,  P). Assume that for each 
n 2 1 the random variable N ,  is independent of the random variables 
X,, n 2 1, and put 
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project 436 POL 11311 1510-1. 
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Let us put 

M(t)=max{k>O: B i < t ) ,  M,(~)=M(~B:),  t > 0 ,  

m(t) =min{k>O: t <  B:), m,(t) =m(tBi), t 2 0 .  

Then M ,  (1) = n = mn (1) and, for every t > 0, 

(Is1) ( < t < ( < ( )  + < ( + 1 6 k C M ( t ) + l  max a:. 

Assume that, for every E > 0, 

1 Nn 
(1-2) C J x 2 d P ( X k < x ) % 0  as n + m ,  

B ~ n  k =  1 1x1 8 ~ ~ 5 ,  

where 5 denotes the convergence in probability. The condition (1.2) is called 
the random Lindeberg condition. Let us observe that the convergence in proba- 
bility in (1.2) can be replaced by the convergence in mean. Thus if (1.2) holds, 
then 

(1.3) E (max {o,Z : 1 B k B ~,)lBk,,) + 0 as n + m .  

The condition (1.3) is called the random Feller's condition. We also note 
that if (1.2) holds, then by (1.1) and (1.3), for every t > 0, 

(1.4) E {B&,; JBL} + t as n + m . 

We introduce the usual "broken line process" on [0, 11: 

i (1.5) % (t) = S,,(t)/Bn + XM,(~)+ 1 (tBi -BLn(dl(Bn &,(t)+ 1 1 7  t~ LO7 11. 

It is clear that Y,(t) = Sk/B, whenever t = Bz/B,2, 0 < k < n, and Y,(t) is 
the straight line joining (B:/B:, Sk/Bn) and (B;, l/B:, Sk+ l/Bn) in the interval 
[Bi/Bi, Bi+ l/B:], k = 0, 1, . . ., n - 1. Thus Y, (t), t E [0, 11, is continuous with 
probability one, so that there is a measure P, on the space (C [0, 11, %), accord- 
ing to which the stochastic process {Y,(t), 0 < t < 1) is distributed. Of course, 
here and in what follows C [0, 11 denotes the space of real-valued, continuous 
functions on [0, 11 and V means the a-field of Bore1 sets generated by the open 
sets of uniform topology. 

It is well known that if (1.2) holds, then by Theorem 1 of Rychlik and 
Szynal [21] we have 

(1.6) YNn*W a s n + c o ,  

where W denotes the standard Wiener measure on (C [0, 11, %) with a corre- 
sponding standard Wiener process {W(t), 0 < t < 11, and =- means the weak 
convergence of measures on the space (C [0, 11, %'). 

In this paper we present an almost sure version of this theorem. Namely, 
let 6(x) denote the probability measure which assigns its total mass to 
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x E C [0, 11. Then, for every w E SZ, (6 (Y, (w)), n 1) is a sequence of probabili- 
ty measures on the space (C [0, 11, $9) and the distribution P, of Y, is just the 
average of the random measure 6 (Y, (w)) with respect to P, i.e., for every A E %', 

The same concerns the sequence of probability measures (6 (YN,,), n 2 1). 
We shall form 'time averages' with respect to a logarithmic scale rather 

than 'space averages' and prove almost sure ( a s )  convergence for the resulting 
random measures. To be precise, we present a sufficient condition under which 

as n -, co, for almost every w E 62, 

where log, x = logx if x 2 e, and log, x = 1 if x < e.  The limit relation (1.7) 
will be called an almost sure version of the random functional central limit 
theorem. This remarkable property of the logarithmic means has intensively 
been studied in recent years and many extensions and variants of (1.7) have 
been obtained in the case when P ( N n  = n) = 1, n >, 1. In this case, several 
papers presented sufficient conditions under which (1.7) holds; see, e.g., Bros- 
amler 161, Schatte [22]-[24], Lacey and Philipp [15], Atlagh [I], Rodzik and 
Rychlik [I 91, Ibragimov [12], Ibragirnov and Lifshits [I 31, 1141, Major [16], 
[17], Berkes [2], Berkes and Csaki [3], Fazekas and Rychlik [9], Rychlik and 
Szuster [20], and the references given in these papers. On the other hand, the 
case with random indices N , ,  n 2 1, has not been considered as so far. In this 
paper we extend this theory and show that (1.7) also holds under some ad- 
ditional conditions concerning the sequence {N,, n 2 1). Let us observe that if 
N,  = n with probability one, for every n 2 1, then the random Lindeberg con- 
dition (1.2) holds if and only if (X,, n > 1) satisfies the Lindeberg condition, 
i.e., for every E > 0, 

n 

lim B i 2   EX^ I(IXkl 2 EB,) = 0. 
n-+m k = 1  

On the other hand, if (1.8) holds, then by Prokhorov's theorem (Prokho- 
rov [IS], cf. also Billingsley [5], Section 10) we have 

and, for every t > 0, 

(1.10) lim (B&, , (~ , /B~)  = t. 
n+m 

Furthermore, if (1.8) holds, 
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and, for every n 2 1, N, is independent of {X,, n 2 I), then (1.2) also holds. 
Thus (1.8) and (1.11) imply (1.6). On the other hand, strong laws of large 
numbers for randomly indexed sequences need stronger assumptions than 
(1.11), see e.g. Gut [ll], Chapter I. Of course, in the almost sure central (func- 
tional) limit theorems the convergence is almost sure, therefore the random 
indices case has its own meaning. Actually, (1.7) can be viewed as a weighted 
strong law of large numbers or a Glivenko-Cantelli type theorem (cf., Csorgo 
and Horvath 171). 

The purpose of this paper is to prove the almost sure version of the 
random functional central limit theorems. The presented results generalize, to 
sequences with random indices, the main theorems presented in the above- 
mentioned papers. We extend the basic results of Fazekas and Rychlik [9], and 
Berkes and Csiki [3] to sequences of random elements with random indices. In 
the proofs we shall also follow some ideas of Berkes and Csaki [3]. 

2. RESULTS 

Let BL = BL (B) be the class of functions f : B 4 R with l l f  ] IBL = I l f  l l L  + 
+Ilf llm < a ,  where 

(2.1) llf llL = sup {If (XI-f (v)llp(x, v): x, Y EB, X + Y), 

and llf llm = SUP {If (x)I : XEB). 
Let (B, p) be a separable and complete metric space and let {en, n 2 1) be 

a sequence of B-valued random elements, defined on a probability space 
(Q, P). Let p5 denote the distribution of the random element 8. Let 
log, x = logx if x 3 1 and 0 otherwise. We will also denote by =+ the weak 
convergence of measures on the space (B, p). 

We can now formulate our general results providing the almost sure ver- 
sions of the random functional central limit theorem. 

THEOREM 1. Let {en, n 2 1) be a sequence of B-valued random elements. 
Let {N,, n 2 1) be a sequence of positive integer-valued random variables such 
that, for every n 2 1, N, is independent of Ck, k 2 1. Assume that, for each 
n 2 1, there exist B-valued random elements Ck,,, 1 < k < n, such that Ck,, are 
independent of 5, and N, for k < n and 

(2.2) E {P (Ck,n en) A 1) < C (log + log + (cn/ck)) +') 

for some constants C > 0, E > 0 and an increasing sequence of positive numbers 
{c,, n 2 1) such that 

(2.3) c , - + a ,  ~ , + ~ / c , = 0 ( 1 )  as n - + a .  

Let {d,, n 2 1) be a sequence such that 

(2.4) O~d,<log(cn+l/c , ) ,  n 2 1 ,  D , = d , +  ... + d , + a  as n 4 c o ,  
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and 

(2.5) 
- (I+&) 

E(10g(DNn~4)) -,o asn-,co. 

Then, for any probability distribution p on the Bore1 a-algebra of B, the fol- 
lowing relations are equivalent: 

N n  

(2.6) Di: dk 4, * p,  as n -+ co , P-as., 
k =  1 

N n  

(2.7) D1;,1 C dk ,uck - p, as n + co, P-a.s. 
k =  1 

Remark  1. Theorem 1 remains valid if condition (2.2) is replaced by the 
following: 

(2.8) { P , ~ , , ) / , ) ,  l < k < n ,  n 2 1 ,  

for some constants C > 0 and p > 0. Furthermore, if (2.8) holds, then in Theo- 
rem 1 we can also choose 

for any constant 0 < a < $. 
Remark  2. Let us observe that if (2.4) holds, and 

k =  1 

then (2.7) and, for every E > 0, (2.5) also hold. Furthermore, in the specid case, 
if pen => p as n -+ co, then (2.10) is a consequence of (2.4). On the othet hand, 
(2.7) can be satisfied even if (2.10) does not hold. The importance of copdition 
(2.10) is demonstrated in Berkes et al. [4]. We also note that if 

then (2.5) is a consequence of (2.4). 

THEOREM 2. Let {X,, n 2 1) be a sequence of independent random varia- 
bles with EX, = 0 and 0 < EX: = a: < co, n 2 1. Let {N,, n 2 1) be a se- 
quence of positive integer-valued random variables such that, for every n a 1, 
N,, is independent of (X,, n 2 1). If (1.8) holds, and 

then, for every 0 < a < 3, 

(2.13) Din1 dk8(X)=f+', as n+co,  for almost every ~ € 5 2 ,  
k =  1 

9 - PAMS 27.1 
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1 and 

(2.14) 

where 

Nn 

lim sup dk I (Sk < xBk)- @ ($1 = O P-a.s., 
n+m , k = l  

dk = log (B:+ 1/Bk2) exp ((log B;)"), k 2 1 , 
I 

DNn = dl + ... +aNn and @(x) is the standard normal distribution function. 

Let us observe that if, in Theorem 2, a = 0, then 

dk = log (1 + o:+ l/B:) - o:+ l/B; as k -+ co , 
and 

D N n = l ~ g B N n + l - l ~ g o ~ ~ l ~ g ~ ~ n ,  asn- ,co ,P-a .~ .  

Thus, under the assumptions of Theorem 2, (1.7) also holds, and 
N" 

(2.15) lim sup l(log+ B ~ J - '  2 (c:+ ,/B:) I (s, < XB,)- ~ ( x ) l  = o P-as. 
n-03 k = l  

Let us also note that (2.14) and (2.15) actually give strong versions of the 
random central limit theorem. Of course, (2.14) and (2.15) are consequences of 
Theorem 5.1 of Billingsley [5] and (2.13) or (1.7), respectively. Namely, if h is 
a measurable mapping from C [0, 11 into another metric space S with metric 
p and o-field Y of Bore1 sets, then every probability measure P on (C [0, 11, %?) 
induces on (S, 9') the image measure Ph-l, defined by PhK1 (A) = P(hK1 (A)) 
for A E Y .  Thus, by Theorem 2 and Theorem 5.1 of Billingsley [5], we get 

Nn 

(2.16) Di:xdk6h-1(&)*Wh-1, a s n - r o o ,  P-a.s. 
k =  1 

for every measurable h : C [0, 11 + S which is continuous W-a.e. Hence, setting 
h (x) = x (1) we get (2.14) from (2.13), and (2.1 5) from (1.7), respectively. We may 
also obtain pointwise asymptotic results for the following functionals: 

h1 (x) = sup {lx (t)lP: 0 < t < I),  p > 0, hz (x) = sup {x (t): 0 < t < I}, 

h , (x)=sup{t~[O,l] :  x(t)=O), h4(x)=;1{t~[0,1]:  x(t)>O}, 

h5(x) = I{~E[O, h3(x)]: ~ ( t )  > 01, 

where iZ denotes the Lebesgue measure. 

THEOREM 3. Under the assumptions of Theorem 2, for every 1 < i < 5, 
P-a.s. 

Nn 

(2.17) Din1 dk6hi1(&)*Whi1 as n + m ,  
k = l  

where 

6 h ~ 1 ( & ) = B ~ 1 m a x { I S i l t O < i < k } ,  Why1=~up{lW(t)lP: O G t G l ) ,  
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, 6hz1(&)  = B k l m a x { S i :  0 < i < k ) ,  

2 
Wh;1((-ao,~])=-jexp(-u2/2)du, x 2 0 ,  

I &?-To 

2 
Why1((-m,x])=~h, '((-m,x])=-arcsin&, O < x < l .  

n; 

Let { W ( t ) ,  t 2 0 )  be a one-dimensional Brownian motion starting at 0,  
o n  some probability space (O, d, P), and define the C [0,  I]-valued random 
variables W'", for s > 0,  by  

(2.1 8 )  W ( S ) ( u ) = s - 1 / 2 W ( ~ ~ ) ,  u ~ [ O , l ] .  

THEOREM 4. Let ko = 1 < kl  < k2 < . . . be an increasing sequence of real 
numbers such that k,+,/k, = Q(1) and kn 4 ao as n + GO. Let {N,, n 2 1)  be 
a sequence of positive integer-valued random variables such that, for every n 2 1, 
N ,  is independent of { W ( t ) ,  t 2 0). Put 

I f ,  for some 0 < E < min((1-2a)/a, 1)  in the case 0 < a < 4, or for some 
0 < E < 1 in the case a = 0. 

I 
I (2.20) 

- ( l + e )  ~ ( l o g ( D , , v 4 ) )  + O  a s n + c o ,  
then the relations 

N m  

(2.21) Dlj,' di dw<ki,  3 W ,  as n 4 co , P-a.s., 
i = l  

and 
N n  

I (2.22) Dl;;nl di pw(k,) + W ,  as n + a ,  P-as., 
i= 1 

are equivalent. The result remains valid even in the case when we replace the 
weight sequence {d,, n 2 I ) ,  dejined by (2.19), by any sequence {d:, n 2 1)  such 
that 0 < d,* < d,, n 2 1, and Ern d,* = ao. n =  1 

Let us observe that i f ,  for example, (2.12) holds, then (2.20) and (2.22) also 
hold. Theorem 4 extends, even in  the case N ,  = n ,  n 2 1, P-a.s., Theorem 1 pre- 
sented b y  Rodzik and Rychlik [I91 and Proposition 2.1 proved by  Fazekas 
and Rychlik [9]. 

3. PROOFS 

3.1. Proof of Theorem 1. (2.7) => (2.6). Let p be a given probability 
distribution. Let us observe that, b y  Theorem 7.1 o f  Billingsley 151, The- 
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orem 11.3.3 (b - c) of Dudley [8], Lemma 1.4 of Fazekas and Rychlik [9], and 
Section 2 of Lacey and Philipp 1151 (cf. their (6)), it suffices to prove that, for 
every f E BL, 

N" 

(3.1) lim Di: C dk f (ck) = J f (x)  dp  (x)  P-a.~. 
n - m  k=l B 

On the other hand, taking into account (2.7) and Theorem 7.1 of Billingsley 
[5] ,  we have: For every f E BL, 

N n  

(3-2) lim Di;  C dk J f (4 (4 
fl-*W i=l B 

N n  

= lim Din1 C dk E f (Ck)  = J f ( x )  dp ( x )  P-a.s. 
n - m  k=1 B 

Thus, by (3.1) and (3.2), it is enough to prove that for every f E B L  
N n  

lim D;: C dk ( f  (ck) - E f (Sk))  = 0 P-a.s. 
" - 0 0  k = l  

Let f E BL be given. Letting now Z k  = f ( C k )  - E f (lk), we first estimate lEZj  ZkI 
for all 1 < j < k < co. We have 

On the other hand, if 1 < j < k, then by (2.1) and (2.2) we easily get 

(3-5) IEZjzkl = I E ( f  ( c j )  : j ) - E f  ( c j ) )  (f ( c k ) - f  (cj,k) +f (5j.k)- ~f (ck))l 

= I E  (f ( c j )  ;.)-Ef ( c j ) )  ( f  ( c k )  - f  (Cj,k))  

+ ( f  ( 5 j ) -  E f  ( c j ) )  ( f  (cj,k)- E f  (ck))l  

E I ( f  (WVEf (cj))))l l ( f  ( l j , k ) - f  (ck))l < 2Il f  lIw E l f  (c j ,k) - f  (Ck)l 

Furthermore, for every j and k, we also have the following inequality: 

(3.6) IEzjzkl < 4l l f  ll&.. 
1 Now, by the independence of the random variable N n  of ck, k 2 1, we have 

N n  N" N n  

(3.7) E(DIJ.L z d k ~ k ) ) '  < 2 ~ ( D i :  z dkdj lEz jzk l ) .  
k= 1 j=1 k=j 

Set 6,(j, k) = 1 if ck/cj 2 exp ( ( D ~ ,  v 4)lI2) and 6,  ('j, k) = 0 otherwise. Then, by 
(3.51, we get 
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Here, and in what follows, C denotes an absolute constant and the same 
symbol may be used for different constants. 

On the other hand, by (2.3), M = sup { C , + ~ / C , :  n 2 1) < CO. Thus, the 
relation ck/cj < exp ((DNn v 4)lI2) implies 

(3.9) log ck+ 1 -log cj = log ( ~ k +  l / ~ k )  + log (ck/cj) < log M +  (DN, V 4)1'2. 

Hence, by (3.6) and (3.9), we obtain 

N n  N n  

I Using (3.8) and (3.10), we arrive at 

Let q > 0 be so small that 1+/3 = (l+~)(l-q) > 1. Let 
- ( 1  + E )  

N,, (o) = min ( n  = n (o) : (log (DNn(w) v 4)) < k- ( '+@)  1 
= min { n  (a) : exp (kl - v )  < DNnco) v 4) 

and N,, (a) = GO if, for every n 2 1, DNn (o) v 4 < exp (k l -q ) .  Note that by (2.5) 
there exists a subsequence {N, . ,  n' > 1) c { N , ,  n > 1) such that 

- ( I + & )  
(log (DNn, v 4)) -, 0 as n' -+ co , P-as. 

Thus, {N,, ,  k 2 1 )  is a well-defined nondecreasing sequence of positive inte- 
ger-valued random variables such that 

- ( I + E )  
Thus, z:= T,: .: GO, and zk:,  log(^,,,^ v 4)) < m P-a.s. Consequently, 
T,, -, 0 and DNnlc -, CO, as k -, c ~ ,  P-a.s. On the other hand, for nk < n < nk+ , ,  
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1 we have 
I 

Nn Nn 

(3.12) 1x1 = Din1 I z d i ~ i l  < (DNnk/DNn) ITNnkl f Ilf l l iL  Din1 C di 
i =  1 i = N n k + l  

I 
I G I G n , I + 2 1 1 f l I i ~ ( 1 - D ~ n k / D ~ n ) *  

I 

I Since, by (2.3) and (2.4), sup{dn: n 2 1) < coy it follows that P-a.s. 

Hence, by (3.12) and (3.13), we get (2.6). 

(2.6) (2.7). It is sufficient to show that, for every f E BL, 

I Nn Nn 
I (3.14) lim (Din1 x dk j f (x) dpck (XI) = lim (Di: dk E f  (L)) 

n- m k = l  B n +  w ~ k = l  

I = J f (x) dp (x) P-a.s. 
B 

I On the other hand, by (2.6), for every f EBL we have 

I 

I Thus, by (3.14) and (3.15), it remains to prove that 
I Nn 
I (3.16) lim Di: C dk (f (Ck) - E f (lk)) = 0 P-a.s. 

n-m k = 1  

It is easily seen that (3.16) gives (3.3). This completes the proof. 

3.2. Proof of Remark 1. In the proof we shall follow some ideas of Berkes 
and Csiki [3]. Assume that (2.8) holds. Then in Theorem 1 we can choose 

(3.17) dk = 1% (ck + I /c~)  exP ((log ~ k ) l x )  Y k  Z 1 

for some constant 0 < ol < & Furthermore, in this case, instead of (3.5) we have 

(3.18) IEZjZkI<C(cj/ck)P, 1 < j < k ,  k 2 2 .  

Let us put A,, (j, k) = 1 if ck/cj 2 (log (DNn v 4))"" and A n  (j, k) = 0 otherwise. 
Then, by (3.18), we get 

Nn Nn 

(3.19) E(Bi: z CdjdklEZjZklAnO',k)) 
j = l k = j  
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Nn Nn 

G CE (B;: {log (DNn v 4)} - C dj dk) G CE (log ( D N ~  v 4)) - , 
j= l  k = l  

and, by (3.6), 
N" Nn 

(3.20) E (Din2 (1 - A n  0 ' 9  k))djdk lEzjzkl) 
j= 1 k =  ' J 

where A ('j, n) = (k : cj 6 ck < cj (log (I)Nn v 4))'"). On the other hand, if (3.17) 
and (2.3) hold, then P-as. 

Nn 

D N n ~ 4 = 4 ~ ~ d k ~ ~ ( l ~ g ~ N n ) 1 - a e x p ( ( l ~ g ~ N n ) a )  itSn+cO, 
k =  1 

I 
I and, consequently, 

exp ((log cNJ) - CDNn (log cNnY-', log cNn C (log DNn)lla as n 4 co , 

exp ((log cNn)a) CDNn (log DNn)('- ')la as n + w .  

Thus, taking into account (3.19) and (3.20), we get 
Nn 

(3.21) E(D~: dkZk)' 
k = l  

c C {E (log (DNn v 4))-' + E ((log l)"log log (D, v 4))) 

6 CE (log (DN, v 4)) 
-(I+&) 

for every 0 < E < rnin((1-2a)/a, 1) if 0 < a < i; and if a = 0, then (3.19) and 
(3.20) give (3.21) for every 0 < E < 1. Thus, we get (3.1 1) and the rest of the 
proof is the same as the arguments in the proof of Theorem 1. 

3.3. Proof of Theorem 2. Let I, = Y,, n 2 1, where Y, is defined by (1.5). 
Let 

ck,n = ( x  ( t)  - Sk/Bn) I[B:/B;,I) (t), t 10, 11. 

Then, for every k < n, Ck,, depends only on Xk+,, . . ., X,, and therefore is 
independent of Y ,  = c,. Furthermore, taking into account Doob's inequality, 
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I we also have 

< B; E (ISk[ + max {ISj] : 1 < j < k}) 

<2B;1Emax{ISjl: 1 < j <  k} 

< 2B; (E max (s; : 1 < j < k}) < 2 (Bk/Bn). 

Thus, by (3.22), (2.8) holds with P = 4, c, = B;, n 2 1. On the other hand, 
c, < c,+ ,, n 2 1. We also conclude from (1.8) that c, + co, c,+ ,/c, + 1 as 
n -, co, and finally that (2.3) holds. It is obvious that (2.12) and (2.4) give (2.5) 
for some E > 0. Clearly, (1.8) implies (1.9). On the other hand, relations (2.4) 
and (1.9) imply (2.10). Obviously, by (2.10) and (2.12), we obtain (2.7), which 
gives (2.6). Thus, Theorem 1 and Remark 1 complete the proof. 

3.4. Proof of Theorem 3. In Billingsley 151, cf. Appendix 11, it is shown that 
each of the mappings hi, 1 < i < 5, is measurable and is continuous except on 
a set of Wiener measure 0. Therefore Theorem 3 is a consequence of Theorem 2 
and (2.16). 

3.5. Proof of meorem 4. Let us put 
1 5, (t) = W(kn' (t) = - W (k, t) , 0 < t < 1 , 

and, for 1 < n, 
6 

1 
Il ,n  (t) = - { W (k, t) - W (kt)} I(k*,kn, (kn t), 0 < t < 1. 

& 
Thus, c, and c1,, are C [0, I]-valued random elements and, for every 1 < n, Ct is 
independent of cl,,. On the other hand, by Lemmas 1.11, 1.16 and 1.4 of 
Freedman [lo], we have 

Ep (I,, I1.n) = E sup (15, (0 - 51,n (t)l: 0 < t < 12 

1 
=-Esup{lW(k,t)l: 0 < k,t < kt} 
& 

This gives (2.8) with P = $, C = 2 and c, = k,, n 2 1. Clearly, Remark 1 and 
Theorem 1 complete the proof. 
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